In vivo perturbation of rat hepatocyte canalicular membrane function by diclofenac.

نویسندگان

  • B C Sallustio
  • F L Holbrook
چکیده

Clinical use of diclofenac is associated with a small but significant incidence of hepatotoxicity. It has been reported that in vivo diclofenac treatment results in decreased activity of the extracellular canalicular membrane protein dipeptidylpeptidase IV in rats as a consequence of protein adduct formation by its electrophilic metabolite diclofenac acyl glucuronide. The present study has investigated the effects of in vivo diclofenac treatment (15 mg/kg/day for 7 days) on the activity of an another four rat extracellular canalicular membrane proteins. Animals administered diclofenac (n = 6) had 47.9, 60.4, and 51.6% lower (p < 0.05) canalicular activities of gamma-glutamyltransferase, Mg(2+)-ATPase, and leucine aminopeptidase, respectively, compared with controls (n = 6), but there was no difference in alkaline phosphatase activity. In general, protein adduct formation by acyl glucuronides has been associated with decreased protein function, and the lower canalicular enzyme activities in diclofenac-treated rats may suggest that gamma-glutamyltransferase, Mg(2+)-ATPase, and leucine aminopeptidase are also targets of adduct formation by acyl glucuronide metabolites of diclofenac. However, intracellular redistribution and/or decreased synthesis of these enzymes would also be consistent with our results. The ability of diclofenac acyl glucuronide (200 microg/ml) to form covalently bound adducts with gamma-glutamyltransferase (10 mg/ml) was demonstrated following in vitro incubations (16 h, pH 7.4, and 37 degrees C) in which 20.7 +/- 2.1 ng of diclofenac were covalently bound per milligram of protein. In these in vitro studies, the low concentration of protein adducts formed was not associated with any significant change in gamma-glutamyltransferase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective protein adduct formation of diclofenac glucuronide is critically dependent on the rat canalicular conjugate export pump (Mrp2).

Previous work demonstrates that the reactive acyl glucuronide of the nonsteroidal antiinflammatory drug diclofenac forms selective protein adducts in the liver, which may play a causal role in the pathogenesis of diclofenac-associated liver toxicity. Because glucuronide conjugates can be exported into the bile, we explored the role of diclofenac glucuronide hepatobiliary transport in the format...

متن کامل

CM2 antigen, a potential novel molecule participating in glucuronide transport on rat hepatocyte canalicular membrane

The polarized molecules predominately distributing at hepatocyte canalicular surface play a vital role in disclosing the process of bile formation and etiopathogenisis of cholestatic live diseases. Therefore, it is important to find novel polarized molecules on hepatocyte canalicular membrane. In the present study, canalicular membrane vesicles (CMVs) isolated from rat hepatocyte by density gra...

متن کامل

Localization of the ecto-ATPase (ecto-nucleotidase) in the rat hepatocyte plasma membrane. Implications for the functions of the ecto-ATPase.

The surface distribution of the plasma membrane Ca2+ (Mg2+)-ATPase (ecto-ATPase) in rat hepatocytes was determined by several methods. 1) Two polyclonal antibodies specific for the ecto-ATPase were used to examine the distribution of the enzyme in frozen sections of rat liver by immunofluorescence. Fluorescent staining was observed at the bile canalicular region of hepatocytes. 2) Plasma membra...

متن کامل

Quantification of Drug Transport Function across the Multiple Resistance-Associated Protein 2 (Mrp2) in Rat Livers

To understand the transport function of drugs across the canalicular membrane of hepatocytes, it would be important to measure concentrations in hepatocytes and bile. However, these concentration gradients are rarely provided. The aim of the study is then to measure these concentrations and define parameters to quantify the canalicular transport of drugs through the multiple resistance associat...

متن کامل

Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles.

Bile acid transport and secretion in hepatocytes require phosphatidylinositol (PI) 3-kinase-dependent recruitment of ATP-dependent transporters to the bile canalicular membrane and are accompanied by increased canalicular PI 3-kinase activity. We report here that the lipid products of PI 3-kinase also regulate ATP-dependent transport of taurocholate and dinitrophenyl-glutathione directly in can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 29 12  شماره 

صفحات  -

تاریخ انتشار 2001